Dexter semi-lattices and Hochschild polytopes

Frédéric Chapoton

CNRS & Université de Strasbourg

Janvier 2019
Many partial orders on Catalan objects

Many combinatorial objects are counted by the Catalan numbers, and some of them are naturally partially ordered.
Many combinatorial objects are counted by the Catalan numbers, and some of them are naturally partially ordered. This gives different partial orders with Catalan-many elements:

→ (A) noncrossing partitions for refinement (Kreweras),
→ (B) binary trees and rotation moves (Tamari),
→ (C) binary trees under left-arm rotation order (Pallo),
→ (D) Dyck paths for inclusion,
→ (E) Dyck paths and Tamari sliding moves (equivalent to (B)),
→ (F) Dyck paths and total sliding moves,
and still others by restriction from the symmetric groups.
Many combinatorial objects are counted by the Catalan numbers, and some of them are naturally partially ordered. This gives different partial orders with Catalan-many elements:

→ (A) noncrossing partitions for refinement (Kreweras),
→ (B) binary trees and rotation moves (Tamari),
→ (C) binary trees under left-arm rotation order (Pallo),
→ (D) Dyck paths for inclusion,
→ (E) Dyck paths and Tamari sliding moves (equivalent to (B)),
→ (F) Dyck paths and total sliding moves,
and still others by restriction from the symmetric groups.

Today, introduce yet another one:
→ Dyck paths and dexter sliding moves.
Informal motivation (diagonals of associahedra K_n)

These new posets appear in diagonals of the associahedra, useful in **algebraic topology** to define tensor products of A_∞-algebras.
Informal motivation (diagonals of associahedra K_n)

These new posets appear in diagonals of the associahedra, useful in **algebraic topology** to define tensor products of A_∞-algebras. Recall that there is one associahedra in each dimension.
Informal motivation (diagonals of associahedra K_n)

These new posets appear in diagonals of the associahedra, useful in **algebraic topology** to define tensor products of A_∞-algebras. Recall that there is one associahedra in each dimension.

In dimension 2:

- diagonal of associahedra = Hasse diagram of poset of Tamari intervals.
Informal motivation (diagonals of associahedra K_n)

These new posets appear in diagonals of the associahedra, useful in **algebraic topology** to define tensor products of A_∞-algebras. Recall that there is one associahedra in each dimension.

in dimension 2:

diagonal of associahedra $=$ Hasse diagram of poset of Tamari intervals

Pairs of binary trees (S, T) with $S \leq T$ (in the Tamari order)

Partial order: $(S, T) \leq (S', T')$ iff $S \leq S'$ and $T \leq T'$.
Informal motivation (diagonals of associahedra K_n)

These new posets appear in diagonals of the associahedra, useful in **algebraic topology** to define tensor products of A_∞-algebras. Recall that there is one associahedra in each dimension.

Pairs of binary trees (S, T) with $S \leq T$ (in the Tamari order)
Partial order: $(S, T) \leq (S', T')$ iff $S \leq S'$ and $T \leq T'$.

Note the natural (visual) partition into cells.
Informal motivation (Catalan-many cells)

In this picture, unique cell containing the top \(\simeq \) Tamari lattice

The unique top cell
In this picture, unique cell containing the top \simeq Tamari lattice

the unique top cell

Claim: every vertex of this cell is the **top element** of a cell!
Informal motivation (Catalan-many cells)

In this picture, unique cell containing the top \(\simeq\) Tamari lattice

\(\text{Claim: every vertex of this cell is the } \text{top element} \text{ of a cell!}\)
In this picture, unique cell containing the top \simeq Tamari lattice

the unique top cell and the cells below its vertices

Claim: every vertex of this cell is the *top element* of a cell!

This gives Catalan-many cells (among many more cells A0139).

\rightarrow induced partial order on the *bottom elements* of these cells
One can give an explicit description of this partial order. Similar to the description of the Tamari lattice on Dyck paths.
Direct combinatorial description of Dexter posets

One can give an explicit description of this partial order. Similar to the description of the Tamari lattice on Dyck paths:

For the Tamari lattice: slide any sub-Dyck path (after a descent) by one NW step.

For the Dexter poset: slide any sub-Dyck path (after a descent) not followed by a descent by one or several NW steps.
Direct combinatorial description of Dexter posets

One can give an explicit description of this partial order. Similar to the description of the Tamari lattice on Dyck paths:

- For the **Tamari lattice**: slide any sub-Dyck path (after a descent) by one NW step.
- For the **Dexter poset**: slide any sub-Dyck path (after a descent) not followed by a descent by one or several NW steps.

For the **Tamari lattice**: slide any sub-Dyck path (after a descent) by one NW step.

For the **Dexter poset**: slide any sub-Dyck path (after a descent) not followed by a descent by one or several NW steps.
Direct combinatorial description of Dexter posets

One can give an explicit description of this partial order. Similar to the description of the Tamari lattice on Dyck paths:

For the **Tamari lattice**: slide any sub-Dyck path (after a descent) by one NW step.

For the **Dexter poset**: slide any sub-Dyck path (after a descent) not followed by a descent by one or several NW steps.

→ Every dexter sliding move is like a sequence of Tamari sliding moves, so something like a **shortcut** in the Tamari lattice.
More examples of sliding moves

not a dexter slidable subpath, because followed by a descent. This would be a valid move in the Tamari lattice.
More examples of sliding moves

not a dexter slidable subpath, because followed by a descent. This would be a valid move in the Tamari lattice.

one single dexter sliding move. This would be two consecutive moves in the Tamari lattice.
Comparison between Tamari and Dexter

Dexter on the left and Tamari on the right
Comparison between Tamari and Dexter

Dexter on the left and Tamari on the right

Tamari has strictly more relations than Dexter.
Picture of the next full Dexter poset
Can you see the hidden pentagon?
Properties of the Dexter posets

→ the dexter sliding moves are the covering relations
Properties of the Dexter posets

→ the dexter sliding moves are the covering relations
→ unique minimal element:

Theorem

The dexter poset D_n is a meet-semilattice.

→ every pair of elements has a unique common lower bound.

(not the same as in the Tamari lattice)

Proof

$≃$ closing a zipper from left to right.

Corollary

Every interval in D_n is a lattice.
Properties of the Dexter posets

→ the dexter sliding moves are the covering relations
→ unique minimal element :
→ number of maximal elements = Motzkin number
(with an explicit combinatorial description)
Properties of the Dexter posets

→ the dexter sliding moves are the covering relations
→ unique minimal element : \(~\sim\sim\sim\sim\sim\sim\sim\sim\sim\)
→ number of maximal elements = Motzkin number
(with an explicit combinatorial description)

Theorem

The dexter poset \mathcal{D}_n is a meet-semilattice.

→ every pair of elements has a unique common lower bound.
(not the same as in the Tamari lattice)
Properties of the Dexter posets

→ the dexter sliding moves are the covering relations
→ unique minimal element:
→ number of maximal elements = Motzkin number
(with an explicit combinatorial description)

Theorem

The dexter poset \mathcal{D}_n is a meet-semilattice.

→ every pair of elements has a unique common lower bound.
(not the same as in the Tamari lattice)
Proof \simeq closing a zipper from left to right.
Properties of the Dexter posets

→ the dexter sliding moves are the covering relations
→ unique minimal element:
→ number of maximal elements = Motzkin number
(with an explicit combinatorial description)

Theorem

The dexter poset \mathcal{D}_n is a meet-semilattice.

→ every pair of elements has a unique common lower bound.
(not the same as in the Tamari lattice)
Proof \simeq closing a zipper from left to right.

Corollary

Every interval in \mathcal{D}_n is a lattice.
Theorem

The number of intervals in the poset \mathcal{D}_n is 1 for $n = 0$ and

$$3 \frac{2^{n-1}(2n)!}{n!(n+2)!} \quad \text{for} \quad n \geq 1.$$
Theorem

The number of intervals in the poset \(\mathcal{D}_n \) is 1 for \(n = 0 \) and

\[
3 \frac{2^{n-1}(2n)!}{n!(n+2)!} \quad \text{for} \quad n \geq 1.
\]

→ sequence A257 : 1, 1, 3, 12, 56, 288, 1584, 9152, . . . (Tutte)
→ (A) numbers of rooted bicubic planar maps on \(2n \) vertices
→ (B) numbers of rooted Eulerian planar maps with \(n \) edges
→ (C) numbers of modern intervals in the Tamari lattices
→ (D) numbers of new intervals in the Tamari lattices
Theorem

*The number of intervals in the poset \mathcal{D}_n is 1 for $n = 0$ and

\[
3 \frac{2^{n-1}(2n)!}{n!(n+2)!} \quad \text{for} \quad n \geq 1.
\]

→ sequence A257 : 1, 1, 3, 12, 56, 288, 1584, 9152, ... (Tutte)
→ (A) numbers of **rooted bicubic planar maps** on $2n$ vertices
→ (B) numbers of **rooted Eulerian planar maps** with n edges
→ (C) numbers of **modern intervals** in the Tamari lattices
→ (D) numbers of **new intervals** in the Tamari lattices

Bijection between (A) and (B) is classical (Tutte).
Rognerud has given a simple bijection between (C) and (D).
The proof uses a recursive bijective description of all the intervals.
The proof uses a recursive bijective description of all the intervals. The good **catalytic parameter** turns out to be the number of **blocks** (returns to zero) of the minimum of the interval.
About the proof (bijectons and formulas)

The proof uses a recursive bijective description of all the intervals. The good **catalytic parameter** turns out to be the number of **blocks** (returns to zero) of the minimum of the interval. → functional equation

\[
f = 1 + st + st(f - 1) \left(1 + \frac{sf - f|_{s=1}}{s - 1} \right) + tf|_{s=1}.
\]
The proof uses a recursive bijective description of all the intervals. The good **catalytic parameter** turns out to be the number of **blocks** (returns to zero) of the minimum of the interval.

→ **functional equation**

\[
f = 1 + st + st(f - 1) \left(1 + \frac{sf - f\big|_{s=1}}{s - 1}\right) + t(f - 1)f\big|_{s=1}.
\]

Using the general method of Bousquet-Mélou and Jehanne, one obtains an algebraic equation

\[
16g^2 t^2 - g(8t^2 + 12t - 1) + t^2 + 11t - 1
\]

for the generating series \(g = f\big|_{s=1} \)
The proof uses a recursive bijective description of all the intervals. The good **catalytic parameter** turns out to be the number of **blocks** (returns to zero) of the minimum of the interval.

→ **functional equation**

\[
f = 1 + st + st(f - 1) \left(1 + \frac{sf - f|_{s=1}}{s - 1} \right) + t(f - 1)f|_{s=1}.
\]

Using the general method of Bousquet-Mélou and Jehanne, one obtains an algebraic equation

\[
16g^2 t^2 - g(8t^2 + 12t - 1) + t^2 + 11t - 1
\]

for the generating series \(g = f|_{s=1} \)

→ the known algebraic equation for the sequence A257
A very special interval

General picture of the dexter order looks like the union of some polyhedra. Show What are these polyhedra?
A very special interval

General picture of the dexter order looks like the union of some polyhedra. Show What are these polyhedra?
Let us concentrate on one specific interval between

\[
\text{and}
\]
A very special interval

General picture of the dexter order looks like the union of some polyhedra. What are these polyhedra?
Let us concentrate on one specific interval between

Exercise: they are indeed comparable in the dexter order!
A very special interval

General picture of the dexter order looks like the union of some polyhedra. What are these polyhedra?
Let us concentrate on one specific interval between

Exercise: they are indeed comparable in the dexter order!

Call F_n the set of elements in this interval (with n little peaks). This is a lattice (because all intervals are).
The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of polytopes, called the **Hochschild polytopes** used to make combinatorial cellular models of free loops spaces.
The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of polytopes, called the **Hochschild polytopes** used to make combinatorial cellular models of free loops spaces

→ definition (1) as iterated truncation of the n-simplex

→ definition (2) using explicit (recursive) “cubical coordinates”
The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of polytopes, called the Hochschild polytopes used to make combinatorial cellular models of free loops spaces

→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval $F_n \simeq$ the Hochschild polytope of dimension n. The number of elements of F_n is $2^{n-2}(n+3)$.

namely 2, 5, 12, 28, 64, 144, 320,
The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of polytopes, called the **Hochschild polytopes** used to make combinatorial cellular models of free loops spaces

→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

*The interval $F_n \simeq$ the Hochschild polytope of dimension n. The number of elements of F_n is $2^n - 2(n + 3)$."

namely 2, 5, 12, 28, 64, 144, 320, . . .

The h-vector should be nice too : $(x + 1)^{n-2}(x^2 + (n + 1)x + 1)$
The Hochschild polytope

In algebraic topology, Saneblidze has introduced a family of polytopes, called the Hochschild polytopes used to make combinatorial cellular models of free loops spaces
→ definition (1) as iterated truncation of the n-simplex
→ definition (2) using explicit (recursive) “cubical coordinates”

Theorem

The interval $F_n \sim$ the Hochschild polytope of dimension n. The number of elements of F_n is $2^{n-2}(n + 3)$.

namely 2, 5, 12, 28, 64, 144, 320,
The h-vector should be nice too : $(x + 1)^{n-2}(x^2 + (n + 1)x + 1)$
Not graded, hence not distributive. Maybe a trim lattice?
→ Counting **edges in the Hasse diagrams** of \mathcal{D}_n
With no colors: same h-vector as the associahedra (Narayana numbers)
Colors according to the type of sliding move (full or not): refined symmetry
→ Counting **edges in the Hasse diagrams** of \mathbb{D}_n
With no colors: same h-vector as the associahedra (Narayana numbers)
Colors according to the type of sliding move (full or not): refined symmetry
→ not clear if the m-analogues of \mathbb{D}_n are so nice
There are large prime numbers in the numbers of intervals!
→ Counting **edges in the Hasse diagrams** of \mathcal{D}_n
With no colors: same h-vector as the associahedra (Narayana numbers)
Colors according to the type of sliding move (full or not): refined symmetry
→ not clear if the m-analogues of \mathcal{D}_n are so nice
There are large prime numbers in the numbers of intervals!
→ the **diameter** of F_n seems to be n
(for those among you who like computing diameters)
Bonus tracks (conjectures, remarks, speculations)

→ Counting **edges in the Hasse diagrams** of \mathcal{D}_n
With no colors: same h-vector as the associahedra (Narayana numbers)
Colors according to the type of sliding move (full or not): refined symmetry
→ not clear if the m-analogues of \mathcal{D}_n are so nice
There are large prime numbers in the numbers of intervals!
→ the **diameter** of F_n seems to be n
(for those among you who like computing diameters)
→ values at -1 and -2 of the **zeta polynomials** of \mathcal{D}_n
intriguing appearance of A7852 **Antichains in rooted plane trees**
on n nodes
→ Counting **edges in the Hasse diagrams** of D_n
With no colors: same h-vector as the associahedra (Narayana numbers)
Colors according to the type of sliding move (full or not): refined symmetry
→ not clear if the m-analogues of D_n are so nice
There are large prime numbers in the numbers of intervals!
→ the **diameter** of F_n seems to be n
(for those among you who like computing diameters)
→ values at -1 and -2 of the **zeta polynomials** of D_n
intriguing appearance of A7852 Antichains in rooted plane trees
on n nodes
→ the dexter lattice D_n is not derived equivalent to the Tamari lattice
Questions ?