Une notion de récurrence dans le modèle du tas de sable sur le réseau carré

Henri Derycke
joint work with Yvan Le Borgne

LaBRI

JCB 2019, Février 11-13, Bordeaux
Sandpile Model [Bak, Tang, Wiesenfeld 87]

Configuration: $\eta : V \mapsto \mathbb{N}$

$\nu \in V$ is unstable for η if $\eta(\nu) \geq \deg(\nu)$, it is stable otherwise.
Sandpile Model [Bak, Tang, Wiesenfeld 87]

Configuration: $\eta: V \mapsto \mathbb{N}$

$\nu \in V$ is unstable for η if $\eta(\nu) \geq \deg(\nu)$, it is stable otherwise.

Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.
Configuration: $\eta : V \mapsto \mathbb{N}$

$v \in V$ is unstable for η if $\eta(v) \geq \deg(v)$, it is stable otherwise.

Toppling $u : \eta \mapsto \eta + \Delta^u$ If u is unstable, the toppling is legal. It is forced otherwise.
Configuration: $\eta : V \mapsto \mathbb{N}$

$v \in V$ is *unstable* for η if $\eta(v) \geq \deg(v)$, it is *stable* otherwise.

Toppling $u : \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.
Sandpile Model [Bak, Tang, Wiesenfeld 87]

Configuration: \(\eta : V \mapsto \mathbb{N} \)

\(v \in V \) is *unstable* for \(\eta \) if \(\eta(v) \geq \deg(v) \), it is *stable* otherwise.

Toppling \(u : \eta \mapsto \eta + \Delta^{(u)} \) If \(u \) is unstable, the toppling is legal. It is forced otherwise.
Configuration: $\eta : V \mapsto \mathbb{N}$

A vertex $v \in V$ is unstable for η if $\eta(v) \geq \deg(v)$, it is stable otherwise.

Toppling $u : \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.
Sandpile Model [Bak, Tang, Wiesenfeld 87]

Configuration: $\eta : V \mapsto \mathbb{N}$
$v \in V$ is unstable for η if $\eta(v) \geq \deg(v)$, it is stable otherwise.
Toppling $u : \eta \mapsto \eta + \Delta(u)$ If u is unstable, the toppling is legal. It is forced otherwise.
The order of toppling does not change the result: $\eta \rightarrow \eta + \sum_{v \in V} a_v \Delta(v)$.

H. Derycke, Y. Le Borgne (LaBRI)
Square lattice, Sandpile and Recurrence
JCB 2019
2 / 29
Sandpile Model [Bak, Tang, Wiesenfeld 87]

Configuration: $\eta : V \mapsto \mathbb{N}$

$\nu \in V$ is unstable for η if $\eta(\nu) \geq \deg(\nu)$, it is stable otherwise.

Toppling $u : \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

The order of toppling does not change the result: $\eta \rightarrow \eta + \sum_{\nu \in V} a_{\nu} \Delta^{(\nu)}$.
Stabilisation : while a vertex is unstable, topple it.
The sink

How to stabilize (even with a large number of grains)?

\[
\begin{array}{cc}
2 & 2 \\
3 & 3 \\
2 & 2 \\
\end{array}
\]
The sink

How to stabilize (even with a large number of grains)?

We distinguish a vertex as the sink that won’t topple.
The sink

How to stabilize (even with a large number of grains)?

We distinguish a vertex as the sink that won’t topple.

The sink guarantees that the stabilisation of any configuration η terminates and we note the result $\mathsf{stab}(\eta)$.
The sink

How to stabilize (even with a large number of grains)?

![Stabilisation](image)

We distinguish a vertex as the sink that won’t topple.

The sink guarantees that the stabilisation of any configuration η terminates and we note the result $\mathsf{stab}(\eta)$.

Markov Chain

- States: stable configurations on G
- Transition: Add a particle from the sink to a vertex chosen uniformly and stabilize

Recurrent states are in the same connected component.
The sink

How to stabilize (even with a large number of grains)?

\[
\begin{array}{c|c|c|c}
2 & 2 \\
3 & 3 \\
2 & 2 \\
\end{array}
\]
\[
\begin{array}{c|c|c|c}
0 & 1 \\
2 & 2 \\
9 & 1 \\
\end{array}
\]
\[
\begin{array}{c|c|c|c}
1 & 1 \\
2 & 2 \\
8 & 1 \\
\end{array}
\]

We distinguish a vertex as the sink that won’t topple.

The sink guarantees that the stabilisation of any configuration \(\eta \) terminates and we note the result \(\text{mathsf stab}(\eta) \).

Markov Chain

- States: stable configurations on \(G \)
- Transition: Add a particle from the sink to a vertex chosen uniformly and stabilize

Recurrent states are in the same connected component.
Test of recurrence

Dhar operator
Topple the sink (forced), then stabilize: $dhar(\eta) := \text{stab}(\eta + \Delta^{(s)})$
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

\[
\begin{array}{c|c|c|c|c|c|}
0 & 1 & 0 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 1 & 1 \\
s & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: $\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)})$
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta(s)) \)
Test of recurrence

Dhar operator
Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: $\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)})$
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: $\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)})$

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.
Test of recurrence

Dhar operator
Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)

Dhar Criterion
A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.
Test of recurrence

Dhar operator
Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)

Dhar Criterion
A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.
Test of recurrence

Dhar operator
Topple the sink (forced), then stabilize: $\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)})$

Dhar Criterion
A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)

![Dhar operator example](image)

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.

![Dhar Criterion example](image)
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: $\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)})$

![Diagram of sandpile model and Dhar operator application]

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.

![Diagram illustrating the Dhar criterion application]
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)

\[
\begin{array}{c|c}
0 & 1 \\
2 & 2 \\
s & 1 \\
\hline
3 & 2 \\
& s \\
\hline
0 & 4 \\
& s \\
\hline
1 & 2 \\
& s \\
\hline
2 & 0 \\
& s \\
\hline
0 & 1 \\
& s
\end{array}
\]

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.

\[
\begin{array}{c|c}
0 & 1 \\
2 & 0 \\
s & 1 \\
\hline
3 & 0 \\
& s \\
\hline
0 & 2 \\
& s \\
\hline
1 & 0 \\
& s
\end{array}
\]
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: \(\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)}) \)

\[
\begin{array}{cccc}
0 & 1 & 0 & 1 \\
2 & 2 & 3 & 2 \\
s & 1 & s & 2 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
1 & 1 & 0 & 4 \\
1 & 2 & s & 0 \\
1 & 1 & s & 1 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
2 & 0 & 1 & 2 \\
2 & 1 & s & 1 \\
0 & 1 & s & 1 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
0 & 1 & 2 & 2 \\
s & s & 1 & 1 \\
\end{array}
\]

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.

\[
\begin{array}{cccc}
0 & 1 & 0 & 1 \\
2 & 0 & 3 & 0 \\
s & 1 & s & 2 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
0 & 1 & 0 & 2 \\
3 & 0 & s & 0 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\end{array}
\]
Test of recurrence

Dhar operator

Topple the sink (forced), then stabilize: $\text{dhar}(\eta) := \text{stab}(\eta + \Delta^{(s)})$

Dhar Criterion

A stable configuration is recurrent iff it is a fixed point of the Dhar operator. Then, each vertex topples exactly once while the operator execution.
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrences on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s, v_1, v_2, v_3, v_4, v_5, v_6
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrents on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1,$
Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrants on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge
- Get the closest pending edge to the sink
- Process the grain(s) on the edge
- If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrences on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

- Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrents on K_n)
- Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
- Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.

While there is a pending edge
- Get the closest pending edge to the sink
- Process the grain(s) on the edge
- If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
- Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrants on K_n)
- Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
- Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
 - Get the closest pending edge to the sink
 - Process the grain(s) on the edge
 - If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrernts on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrernts on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
 - Get the closest pending edge to the sink
 - Process the grain(s) on the edge
 - If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrents on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge,
- Get the closest pending edge to the sink
- Process the grain(s) on the edge
- If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_5, v_6$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
- Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrences on K_n)
- Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
- Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4,$

Mark edges incident to the sink as pending edges.

While there is a pending edge
- Get the closest pending edge to the sink
- Process the grain(s) on the edge
- If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrents on K_n)

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrents on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
 Get the closest pending edge to the sink
 Process the grain(s) on the edge
 If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph \(G \) and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrents on \(K_n \))
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.

While there is a pending edge:
- Get the closest pending edge to the sink
- Process the grain(s) on the edge
- If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: \(s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, \)
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8,$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrences on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
 Get the closest pending edge to the sink
 Process the grain(s) on the edge
 If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8, v_6$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce’s path for sorted recurrants on K_n)
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8, v_6, e_9$
Bijections with spanning trees

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph \(G \) and its spanning trees are in bijection.

Several bijections:
Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on \(K_n \))
Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)
Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Diagram:

Mark edges incident to the sink as pending edges.
While there is a pending edge
Get the closest pending edge to the sink
Process the grain(s) on the edge
If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: \(s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8, v_6, e_9 \)
Counting grains

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration \(\eta \) on \(G = (V \cup \{s\}, E) \),

\[
\text{level}(\eta) = \left(\sum_{v \in V} \eta(v) \right) + \deg(s) - |E|.
\]

Let \(R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{\text{level}(\eta)} \)

Theorem (López 97)

For any graph \(G = (V \cup \{s\}, E) \),

\[
R_G(y) = \text{Tutte}_G(1, y).
\]

where \(\text{Tutte}_G(1, y) = \sum_{T \in \Sigma_G} y^{\text{ext}(T)} \) counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.
Counting grains

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$\text{level}(\eta) = \left(\sum_{v \in V} \eta(v) \right) + \deg(s) - |E|.$$

Let $R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{\text{level}(\eta)}$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\text{Tutte}_G(1, y) = \sum_{T \in \Sigma(G)} y^{\text{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.
Counting grains

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$level(\eta) = \left(\sum_{v \in V} \eta(v) \right) + \text{deg}(s) - |E|.$$

Let $R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{level(\eta)}$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\text{Tutte}_G(1, y) = \sum_{T \in \Sigma(G)} y^{\text{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.
Counting grains

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$\text{level}(\eta) = \left(\sum_{v \in V} \eta(v)\right) + \deg(s) - |E|.$$

Let $R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{\text{level}(\eta)}$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\text{Tutte}_G(1, y) = \sum_{T \in \Sigma(G)} y^{\text{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.
Tracking external activity while changing order on edges

With $e_1 <_E e_2 <_E \cdots <_E e_{|E|}$ an order on the edges of E, an external edge is *active* if it is maximal for $<_E$ in its fundamental cycle.

Proposition

$$\text{Tutte}_G(1, y) = \sum_{T \in \Sigma(G)} y^{\text{ext}_{<_E}(T)}$$

does not depend on $<_E$.
Tracking external activity while changing order on edges

With $e_1 <_E e_2 <_E \cdots <_E e_{|E|}$ an order on the edges of E, an external edge is active if it is maximal for $<_E$ in its fundamental cycle.

{\text{Proposition}}

$$\text{Tutte}_G(1, y) = \sum_{T \in \Sigma(G)} y^{\text{ext}_E(T)}$$

does not depend on $<_E$

\{e_i, e_j\} is a critical pair if

- e_i is external
- e_j is on e_i fundamental cycle
- e_i and e_j are maximal on e_i fundamental cycle
Tracking external activity while changing order on edges

With $e_1 <_E e_2 <_E \cdots <_E e_{|E|}$ an order on the edges of E, an external edge is active if it is maximal for $<_E$ in its fundamental cycle.

Proposition

$$\text{Tutte}_G(1, y) = \sum_{T \in \Sigma(G)} y^{\text{ext}<_E}(T)$$ does not depend on $<_E$

\{e_i, e_j\} is a critical pair if

- e_i is external
- e_j is on e_i fundamental cycle
- e_i and e_j are maximal on e_i fundamental cycle

Let τ_i exchanging e_i and e_{i+1} in $<_E$.

$$\Phi_i(T) = \begin{cases} T \Delta \{e_i, e_{i+1}\} & \text{if } \{e_i, e_{i+1}\} \text{ is a critical pair of } T \\ T & \text{otherwise} \end{cases}$$

Lemma: for all T $\text{ext}_{<_E}(T) = \text{ext}_{\tau_i(<_E)}(\Phi_i(T))$.

H. Derycke, Y. Le Borgne (LaBRI) Square lattice, Sandpile and Recurrence JCB 2019 8 / 29
Tutte Polynomial

Let a graph \(G = (V, E) \) and \(<_E\) an order on the edges of \(E\).

\[
\text{Tutte}_G(x, y) = \sum_{T \in \Sigma(G)} x^\text{int}(T) y^\text{ext}(T)
\]

Active external edge: maximal in its fundamental cycle.
Active internal edge: maximal in its co-cycle.

For \(G = K_4 \), \(\text{Tutte}_G(x, y) = x^3 + y^3 + 3x^2 + 4xy + 3y^2 + 2x + 2y \) and \(T \) weights \(xy \).

When \(G \) is planar, \(\text{Tutte}_G(x, y) = \text{Tutte}_{G^*}(y, x) \). Then if planar and self-dual, \(\text{Tutte}_G(x, y) = \text{Tutte}_G(y, x) \).
Finite graphs

- Stable configurations

- Dhar Criterion

- Bijection between recurrent and spanning trees

- Tutte polynomial

- Invariant by edge exchange

- Symmetric for self-dual planar graphs
Checkpoint

<table>
<thead>
<tr>
<th>Finite graphs</th>
<th>Square lattice (biperiodicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stable configurations</td>
<td></td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td></td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td></td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td></td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td></td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td></td>
</tr>
</tbody>
</table>
Checkpoint

<table>
<thead>
<tr>
<th>Finite graphs</th>
<th>Square lattice (biperiodicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stable configurations</td>
<td>▶ Biperiodic stable configurations</td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td></td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td></td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td></td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td></td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td></td>
</tr>
<tr>
<td>Finite graphs</td>
<td>Square lattice (biperiodicity)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>▶ Stable configurations</td>
<td>▶ Biperiodic stable configurations</td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td>▶ Weak Dhar Criterion (projective sink)</td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td></td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td></td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td></td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td></td>
</tr>
</tbody>
</table>
Checkpoint

<table>
<thead>
<tr>
<th>Finite graphs</th>
<th>Square lattice (biperiodicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stable configurations</td>
<td>▶ Biperiodic stable configurations</td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td>▶ Weak Dhar Criterion (projective sink)</td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td>▶ Bijection recurrent and some spanning forests of the torus</td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td></td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td></td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td></td>
</tr>
</tbody>
</table>
Checkpoint

<table>
<thead>
<tr>
<th>Finite graphs</th>
<th>Square lattice (biperiodicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stable configurations</td>
<td>▶ Biperiodic stable configurations</td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td>▶ Weak Dhar Criterion (projective sink)</td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td>▶ Bijection recurrent and some spanning forests of the torus</td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td>▶ Restriction of Tutte polynomial</td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td></td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td></td>
</tr>
</tbody>
</table>
Finite graphs

- Stable configurations
- Dhar Criterion
- Bijection between recurrent and spanning trees
- Tutte polynomial
- Invariant by edge exchange
- Symmetric for self-dual planar graphs

Square lattice (biperiodicity)

- Biperiodic stable configurations
- Weak Dhar Criterion (projective sink)
- Bijection recurrent and some spanning forests of the torus
- Restriction of Tutte polynomial
- Distribution of external activity invariant by rotation of projective sink

Symmetric for self-dual planar graphs
<table>
<thead>
<tr>
<th>Finite graphs</th>
<th>Square lattice (biperiodicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stable configurations</td>
<td>▶ Biperiodic stable configurations</td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td>▶ Weak Dhar Criterion (projective sink)</td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td>▶ Bijection recurrent and some spanning forests of the torus</td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td>▶ Restriction of Tutte polynomial</td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td>▶ Distribution of external activity invariant by rotation of projective sink</td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td>▶ Symmetric joint distribution of external/internal activities changing by rotation</td>
</tr>
</tbody>
</table>
Some definition of recurrence for \mathbb{Z}^2

From wired uniform spanning forest [Gamlin, Jarai] with an anchor burning bijection.

Local description in probability [Priezzhev, Ruelle]

Sandpile identity: $\lim_{n \to \infty} \operatorname{dhar}^n(0^{\mathbb{Z}^2})$? [Paoletti, Caracciollo, Sportiello, Levine, Pegden, Smart...]

Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]

Convergence in terms of density [Pegden, Smart 12]
Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]

Convergence in terms of density [Pegden, Smart 12]

Source: W. Pegden, $n = 2^{13}$
Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]

Convergence in terms of density [Pegden, Smart 12]

Source: W. Pegden, $n = 2^{14}$
Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
Convergence in terms of density [Pegden, Smart 12]
Source: W. Pegden, $n = 2^{30}$

- Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
- Convergence in terms of density [Pegden, Smart 12]
Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
Convergence in terms of density [Pegden, Smart 12]
Pattern in periodic zones are invariant when toppling the sink \Rightarrow recurrent?
Pattern in periodic zones are invariant when toppling the sink ⇒ recurrent?
Pattern in periodic zones are invariant when toppling the sink \Rightarrow recurrent?
Pattern in periodic zones are invariant when toppling the sink ⇒ recurrent?
Pattern in periodic zones are invariant when toppling the sink \Rightarrow recurrent?
Pattern in periodic zones are invariant when toppling the sink ⇒ recurrent ?
Pattern in periodic zones are invariant when toppling the sink \(\Rightarrow\) recurrent?
Pattern in periodic zones are invariant when toppling the sink \Rightarrow recurrent?
Pattern in periodic zones are invariant when toppling the sink \Rightarrow recurrent?
Pattern in periodic zones are invariant when toppling the sink ⇒ recurrent ?
Pattern in periodic zones are invariant when toppling the sink ⇒ recurrent?
Heuristic: locally, toppling the sink behave as the toppling of an half-plane.
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 \ (\neq (0, 0))$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\bar{s} \in \mathbb{Q}^2 \ (\neq (0,0))$ if after a forced toppling of any half-plane orthogonal to \bar{s}, all other vertices in the complement topple (once).
Definition (Weak Dhar Criterion [D., Le Borgne 2018])
A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 (\neq (0, 0))$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).

Direction \vec{s} du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction \(\vec{s} \in \mathbb{Q}^2 \ (\neq (0,0)) \) if after a forced toppling of any half-plane orthogonal to \(\vec{s} \), all other vertices in the complement topple (once).

\[\xrightarrow{+1} \]

Direction \(\vec{s} \) du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction \(\vec{s} \in \mathbb{Q}^2 \) \(\neq (0, 0) \) if after a forced toppling of any half-plane orthogonal to \(\vec{s} \), all other vertices in the complement topple (once).

Direction \(\vec{s} \) du puits

Direction \(\vec{s} \) du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 \ (\neq (0, 0))$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ ($\neq (0,0)$) if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 \neq (0,0)$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ ($\neq (0, 0)$) if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).

Direction \vec{s} du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ ($\neq (0, 0)$) if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction \(\vec{s} \in \mathbb{Q}^2 \neq (0, 0) \) if after a forced toppling of any half-plane orthogonal to \(\vec{s} \), all other vertices in the complement topple (once).

\[+1\]

Direction \(\vec{s} \) du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 \setminus \{(0, 0)\}$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).

Direction \vec{s} du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])
A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (≠ (0, 0)) if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).

\[+1 \]

\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
2 & 2 & 1 & 3 & 2 & 2 & 2 \\
\hline
2 & 2 & 1 & 3 & 2 & 2 & 2 \\
\hline
2 & 2 & 1 & 3 & 2 & 2 & 2 \\
\hline
2 & 2 & 1 & 3 & 2 & 2 & 2 \\
\hline
2 & 2 & 1 & 3 & 2 & 2 & 2 \\
\hline
\end{array}

Direction \vec{s} du puits
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 (\neq (0, 0))$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).

\vec{s} du puits

+1
Definition (Weak Dhar Criterion [D., Le Borgne 2018])

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2 \neq (0, 0)$ if after a forced toppling of any half-plane orthogonal to \vec{s}, all other vertices in the complement topple (once).

![Diagram of sandpile model](image-url)
Demo
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.

\[\begin{array}{ccccccccccc}
3 & 3 & 3 & 3 & 3 & 0 & 3 & 3 & 3 & 3 & 0 & 3 \\
1 & 3 & 0 & 3 & 3 & 1 & 3 & 0 & 3 & 3 & 1 \\
1 & 3 & 3 & 1 & 3 & 1 & 3 & 3 & 1 & 3 & 1 \\
1 & 3 & 0 & 3 & 2 & 1 & 3 & 0 & 3 & 2 & 1 \\
\end{array}\]

sweep
line

Periodicity along the orthogonal of the sink
Ultimately periodicity in the opposite direction of the sink, whatever the starting half-plane
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.

![Diagram of a sweep line and periodicity along the orthogonal of the sink.](image)
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.

![Diagram of sandpile with sweep line and periodicity along the orthogonal of the sink]
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.

<table>
<thead>
<tr>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>0</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>0</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frozen

Working zone

```
1 3 0 3 2 1 3 0 3 2 1
1 1 1 2 3 1 1 1 2 3 1
```

Pericodiity along the orthogonal of the sink

Ultimately periodicity in the opposite direction of the sink, whatever the starting half-plane

H. Derycke, Y. Le Borgne (LaBRI) Square lattice, Sandpile and Recurrence JCB 2019 16 / 29
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \bar{s}.
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.

Periodicity along the orthogonal of the sink

Ultimately periodicity in the opposite direction of the sink, whatever the starting half-plane
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s}.
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \bar{s}.

Periodicity along the orthogonal of the sink
Theorem (D., Le Borgne 2018)

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \mathbf{s}.

- Periodicity along the orthogonal of the sink
- Ultimately periodicity in the opposite direction of the sink, whatever the starting half-plane
sweep line
Spanning forests of the torus rooted on non-contractible cycles with slope $(4, -3)$.

Periodic spanning forest rooted on the half-plane spanning forest of the torus with slope $(1, 0)$ incompatible with the vertical direction.

Theorem [D., Le Borgne 2018] Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $F_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s}.
Spanning forests of the torus rooted on non contractible cycles with slope \((4, -3)\).

Periodic spanning forest rooted on the half-plane.

Spanning forest of the torus with slope \((1, 0)\) incompatible with the vertical direction.

Theorem [D., Le Borgne 2018]

Recurrent configurations of period \(W \times H\) defined by weak Dhar criterion with projective sink in direction \(\vec{s}\) are in bijections with admissible forests of \(F_{W \times H, \vec{s}}\), hence excluding those of slope orthogonal to \(\vec{s}\).
Spanning forests of the torus rooted on non contractible cycles with slope \((4, -3)\).

Periodic spanning forest rooted on the half-plane.
Spanning forests of the torus rooted on non contractible cycles with slope $\left(4, -3\right)$.

Biperiodic spanning forest with infinite paths directed towards the sink.

Theorem [D., Le Borgne 2018]

Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $F_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s}.

H. Derycke, Y. Le Borgne (LaBRI) Square lattice, Sandpile and Recurrence JCB 2019 18 / 29
Spanning forests of the torus rooted on non-contractible cycles with slope $\left(\frac{4}{3}, -\frac{3}{3}\right)$

Biperiodic spanning forest with infinite paths directed towards the sink
Theorem [D., Le Borgne 2018]

Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $\mathcal{F}_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s}.
Spanning forests of the torus rooted on non contractible cycles with slope $(4, -3)$

Theorem [D., Le Borgne 2018]

Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $\mathcal{F}_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s}.

Spanning forest of the torus with slope \((1,0)\) incompatible with the vertical direction

Spanning forests of the torus rooted on non contractible cycles with slope \((4, -3)\)

Theorem [D., Le Borgne 2018]

Recurrent configurations of period \(W \times H\) defined by weak Dhar criterion with projective sink in direction \(\vec{s}\) are in bijections with admissible forests of \(\mathcal{F}_{W \times H, \vec{s}}\), hence excluding those of slope orthogonal to \(\vec{s}\).
Determinantal formula [Kenyon 17] for non contractible cycle rooted spanning forests (NCRSFs)

Refinement with the infinite path’s slope

\[
\begin{array}{c|cccc}
 k \cdot j & k \cdot i \\
 \hline
 0 & 31300528 & 541732 & 1528 & 1 \\
 1 & 31300528 & 5427200 & 31232 & 4 \\
 2 & 541732 & 31232 & 6 \\
 3 & 1528 & 4 \\
 4 & 1 \\
\end{array}
\]

Table: Number of NCRSFs with \(k \) cycles of slope \((i, j)\) on the torus \(T_{4,4} \)

Computation for \(W, H \leq 9 \)
Inverse function

Placing the grains on the edges. ⚪ ⬤
Inverse function

Placing the grains on the edges. ● ○

- Orientation towards the sink
Inverse function

Placing the grains on the edges.

- Orientation towards the sink
- Internal: 1 grain • to the father
Inverse function

Placing the grains on the edges. □ ○

- Orientation towards the sink
- Internal: 1 grain ● to the father
- External: ● depends on the position of the maximal edge on the fundamental cycle
Inverse function

Placing the grains on the edges. ⬜️ ○

- Orientation towards the sink
- Internal: 1 grain ⬜️ to the father
- External: ⬜️ depends on the position of the maximal edge on the fundamental cycle

Red ray

Blue ray
Inverse function

Placing the grains on the edges. ● ○

- Orientation towards the sink
- Internal: 1 grain ● to the father
- External: ● depends on the position of the maximal edge on the fundamental cycle
Inverse function

Placing the grains on the edges. ▶️ ○

- Orientation towards the sink
- Internal: 1 grain • to the father
- External: • depends on the position of the maximal edge on the fundamental cycle

\[s \]

\[e_{\text{max}} \]

\[s \rightarrow e \]
Inverse function

Placing the grains on the edges. ● ○

- Orientation towards the sink
- Internal: 1 grain ● to the father
- External: ● depends on the position of the maximal edge on the fundamental cycle

![Diagram of a sandpile model with grains placed on edges and arrows indicating the direction of grain movement.](image)
Inverse function

Placing the grains on the edges.

- Orientation towards the sink
- Internal: 1 grain \(\bullet \) to the father
- External: \(\bullet \) depends on the position of the maximal edge on the fundamental cycle

\[e_{\text{max}} \]

\[s \]
Inverse function

Placing the grains on the edges. ● ○

- Orientation towards the sink
- Internal: 1 grain ● to the father
- External: ● depends on the position of the maximal edge on the fundamental cycle
- External: ○ on the other endpoint if active

\(e_{\text{max}} \)

\(s \)
Inverse function

Placing the grains on the edges. • ○

- Orientation towards the sink
- Internal: 1 grain • to the father
- External: • depends on the position of the maximal edge on the fundamental cycle
- External: ○ on the other endpoint if active
Inverse function

Placing the grains on the edges. ⬤ ○

- Orientation towards the sink
- Internal: 1 grain ⬤ to the father
- External: ⬤ depends on the position of the maximal edge on the fundamental cycle
- External: ○ on the other endpoint if active
Inverse function

Placing the grains on the edges. • ○

- Orientation towards the sink
- Internal: 1 grain • to the father
- External: • depends on the position of the maximal edge on the fundamental cycle
- External: ○ on the other endpoint if active

Cycles are directed such that they are globally decreasing. Periodicity ⇒ Maximal edge at finite distance
Inverse function

Placing the grains on the edges. ⬜️️️

- Orientation towards the sink
- Internal: 1 grain ⬜️ to the father
- External: ⬜️ depends on the position of the maximal edge on the fundamental cycle
- External: ⬜️ on the other endpoint if active

Cycles are directed such that they are globally decreasing.
Periodicity ⇒ Maximal edge at finite distance
Restricted Tutte Polynomial

\[\mathcal{T}_{W \times H, s}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\text{int}_{W \times H}(T)} y^{\text{ext}_{W \times H}(T)} \]

\(e <_s f \) if \(e \) is closer to the sink than \(f \).

Restrictions
- On NCRSF: \(\mathcal{F}_{W \times H} \).
- On the activity: on the rectangular fundamental domain \(W \times H \) consider exactly 2WH edges.
Restricted Tutte Polynomial

\[T_{W \times H, s}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\text{int}_{W \times H}(T)} y^{\text{ext}_{W \times H}(T)} \]

\(e <_s f \) if \(e \) is closer to the sink than \(f \).

Restrictions

- On NCRSF: \(\mathcal{F}_{W \times H} \).
- On the activity: on the rectangular fundamental domain \(W \times H \) consider exactly \(2WH \) edges.
Restricted Tutte Polynomial

\[T_{W \times H, s}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\text{int}_{W \times H}(T)} y^{\text{ext}_{W \times H}(T)} \]

e \prec s f \text{ if } e \text{ is closer to the sink than } f.

Restrictions

- On NCRSF: \(\mathcal{F}_{W \times H} \).
- On the activity: on the rectangular fundamental domain \(W \times H \) consider exactly 2WH edges.
Restricted Tutte Polynomial

\[T_{W \times H, s}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\text{int}_{W \times H}(T)} y^{\text{ext}_{W \times H}(T)} \]

e \prec_s f \text{ if } e \text{ is closer to the sink than } f.

Restrictions

- On NCRSF: \(\mathcal{F}_{W \times H} \).
- On the activity: on the rectangular fundamental domain \(W \times H \) consider exactly 2WH edges.
Restricted Tutte Polynomial

External activity on $F_{3,1}$:

\[
\begin{array}{ccc}
 & \uparrow & \leftarrow \\
 s & 3 & 0 & 0 \\
 \uparrow & 2 & 1 & 1 \\
 \leftarrow & 1 & 0 & 2 \\
\end{array}
\]

\[
T_{3 \times 1,(0,1)}(1, y) = y^3 + 3y^2 + 6y + 7
\]

\[
T_{3 \times 1,(-1,0)}(1, y) = y^3 + 3y^2 + 6y + 7
\]
Restricted Tutte Polynomial

External activity on $\mathcal{F}_{3,1}$:

\[
\begin{array}{cccc}
 s & \uparrow & \uparrow & \uparrow \\
 \uparrow & 3 & 0 & 0 \\
 \downarrow & 0 & 1 & 3 \\
 \downarrow & 2 & 1 & 1 \\
 \downarrow & 1 & 0 & 2 \\
\end{array}
\]

$\mathcal{T}_{3 \times 1, (0,1)}(1, y) = y^3 + 3y^2 + 6y + 7$

$\mathcal{T}_{3 \times 1, (-1,0)}(1, y) = y^3 + 3y^2 + 6y + 7$

Theorem (D., Le Borgne 2018)

For any directions s, s', $\mathcal{T}_{W \times H, s}(1, y) = \mathcal{T}_{W \times H, s'}(1, y)$.

Restricted Tutte Polynomial

External activity on $\mathcal{F}_{3,1}$:

\[
\begin{array}{ccc}
 s & \uparrow & \rightarrow \\
 \uparrow & 3 & 0 & 0 \\
 \downarrow & 0 & 1 & 3 \\
 \downarrow & 2 & 1 & 1 \\
 \downarrow & 1 & 0 & 2 \\
\end{array}
\]

\[
\mathcal{T}_{3 \times 1, (0,1)}(1, y) = y^3 + 3y^2 + 6y + 7
\]

\[
\mathcal{T}_{3 \times 1, (-1,0)}(1, y) = y^3 + 3y^2 + 6y + 7
\]

Theorem (D., Le Borgne 2018)

For any directions s, s', $\mathcal{T}_{W \times H, s}(1, y) = \mathcal{T}_{W \times H, s'}(1, y)$.

Since \mathbb{Z}^2 is self-dual, we have:

\[
\mathcal{T}_{3 \times 1, (0,1)}(x, y) = x^3y^3 + 3xy^2 + 3x^2y + 3x + 3y + 4
\]

\[
\mathcal{T}_{3 \times 1, (-1,0)}(x, y) = x^3y^3 + 3x^2 + 3y^2 + 3xy + 3x + 3y + 1
\]
External activity

Direction of the sink

For each external edge e, there is an activity sector $[\theta_e, \theta'_e)$.
For any sector excluding all (θ_e) and (θ'_e), the external activity is invariant.
External activity

Direction of the sink

- Convex hulls of fundamental cycles.
External activity

Direction of the sink

- Convex hulls of fundamental cycles.
- Active \Rightarrow Convex hull corner
External activity

For each external edge e, there is an activity sector $[\theta_e, \theta'_e)$.

Direction of the sink

- Convex hulls of fundamental cycles.
- Active \Rightarrow Convex hull corner
External activity

For each external edge e, there is an activity sector $[\theta_e, \theta'_e)$. For any sector excluding all $(\theta_e)_e$ and $(\theta'_e)_e$, the external activity is invariant.

Direction of the sink

- Convex hulls of fundamental cycles.
- Active \Rightarrow Convex hull corner
Critical pair exchange: Rotation step

\[s = (1, 0) \]
Critical pair exchange: Rotation step

\[s = (1, 1) \]
Critical pair exchange: Rotation step

\[s = (1, 1) \]
Critical pair exchange: Rotation step

$s = (0, 1)$
Critical pair exchange: Rotation step

\[s = (0, 1) \]
Critical pair exchange: changing forest slope
<table>
<thead>
<tr>
<th>Finite graphs</th>
<th>Square lattice (biperiodicity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Stable configurations</td>
<td>▶ Biperiodic stable configurations</td>
</tr>
<tr>
<td>▶ Dhar Criterion</td>
<td>▶ Weak Dhar Criterion (projective sink)</td>
</tr>
<tr>
<td>▶ Bijection between recurrent and spanning trees</td>
<td>▶ Bijection recurrent and some spanning forests of the torus</td>
</tr>
<tr>
<td>▶ Tutte polynomial</td>
<td>▶ Restriction of Tutte polynomial</td>
</tr>
<tr>
<td>▶ Invariant by edge exchange</td>
<td>▶ Distribution of external activity invariant by rotation of projective sink</td>
</tr>
<tr>
<td>▶ Symmetric for self-dual planar graphs</td>
<td>▶ Symmetric joint distribution of external/internal activities changing by rotation</td>
</tr>
</tbody>
</table>
Conclusion

We have

Weak Dhar Criterion efficient for biperiodic configurations
▶ Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations
▶ Invariant distribution of external activity on NCRSFs and order given by a direction
▶ Involution on NCRSFs for atomic rotation preserving this distribution
Conclusion

We have

- Weak Dhar Criterion efficient for biperiodic configurations
Conclusion

We have

- Weak Dhar Criterion efficient for biperiodic configurations
- Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations
Conclusion

We have

- Weak Dhar Criterion efficient for biperiodic configurations
- Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations
- Invariant distribution of external activity on NCRSFs and order given by a direction
Conclusion

We have

- Weak Dhar Criterion efficient for biperiodic configurations
- Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations
- Invariant distribution of external activity on NCRSFs and order given by a direction
- Involution on NCRSFs for atomic rotation preserving this distribution
Conclusion

Perspectives
Conclusion

Perspectives

- $T_{W \times H,s}(x, y)$ depends on s
Conclusion

Perspectives

- $\mathcal{T}_{W \times H, s}(x, y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
Conclusion

Perspectives

- $\mathcal{T}_{W \times H, s}(x, y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
Conclusion

Perspectives

- $T_{W \times H, s}(x, y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
 - Experiments: periodic decreasing orders towards a direction is enough:
 $$e \prec_E f \Rightarrow e + (iW, jH) \prec_E f + (iW, jH) \text{ and } \langle s, (iW, jH) \rangle > 0 \Rightarrow e + (iW, jH) \prec_E e$$
Conclusion

Perspectives

- $\mathcal{T}_{W \times H, s}(x, y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
 - Experiments: periodic decreasing orders towards a direction is enough:

 $e <_E f \Rightarrow e + (iW, jH) <_E f + (iW, jH)$ and

 $\langle s, (iW, jH) \rangle > 0 \Rightarrow e + (iW, jH) <_E e$
 - Only decreasing, or only periodic
Conclusion

Perspectives

- $\mathcal{T}_{W \times H,s}(x, y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
 - Experiments: periodic decreasing orders towards a direction is enough: $e <_E f \Rightarrow e + (iW, jH) <_E f + (iW, jH)$ and $\langle s, (iW, jH) \rangle > 0 \Rightarrow e + (iW, jH) <_E e$
 - Only decreasing, or only periodic
 - Anything else
THANK YOU
Markov Chain for $G = (V \cup \{S\}, E)$

- States: stable configurations on G
- Transition: Add a particle to a vertex chosen uniformly and stabilize

The recurrent states are called recurrent configurations.

The stationary distribution is uniform on the recurrent configurations.

Dhar Criterion A stable configuration is recurrent if and only if adding a grain to each neighbor of the sink, and stabilizing result to the same configuration. (fixed point)
Markov Chain for \(G = (V \cup \{S\}, E) \)

- States: stable configurations on \(G \)
- Transition: Add a particle to a vertex chosen uniformly and stabilize

The recurrent states are called recurrent configurations.

The stationary distribution is uniform on the recurrent configurations.

Dhar Criterion A stable configuration is recurrent if and only if adding a grain to each neighbor of the sink, and stabilizing result to the same configuration. (fixed point)
Figure: Each non blue zone is described by a quadratic form. [arxiv:1708.09432]
Quadratic forms for periodic zones [Levine, Pegden, Smart 2012]

\[M(a, b, c) = \begin{pmatrix} c + a & b \\ b & c - a \end{pmatrix} \]

The number of topples is:

\[h(x) = \left[\frac{1}{2} x^t M(a, b, c) x \right] \]

\[= (c + a)x^2 + 2bxy + (c - a)y^2 \]

Sample for \(M(0.25, 0.875, 2.125) \)
Quadratic forms for periodic zones [Levine, Pegden, Smart 2012]

\[M(a, b, c) = \begin{pmatrix} c + a & b \\ b & c - a \end{pmatrix} \]

The number of topples is:

\[h(x) = \left\lceil \frac{1}{2} x^t M(a, b, c) x \right\rceil \]

\[= (c + a)x^2 + 2bxy + (c - a)y^2 \]

Then number of grains is

\[\Delta h(u) = \sum_{v \sim u} h(v) - h(u). \]
Quadratic forms for periodic zones [Levine, Pegden, Smart 2012]

\[M(a, b, c) = \begin{pmatrix} c + a & b \\ b & c - a \end{pmatrix} \]

The number of topples is:

\[h(x) = \left\lceil \frac{1}{2} x^t M(a, b, c)x \right\rceil \]
\[= (c + a)x^2 + 2bxy + (c - a)y^2 \]

Then number of grains is

\[\Delta h(u) = \sum_{v \sim u} h(v) - h(u). \]

▶ It’s periodic for \(a, b, c \in \mathbb{Q} \)
Quadratic forms for periodic zones [Levine, Pegden, Smart 2012]

\[M(a, b, c) = \begin{pmatrix} c + a & b \\ b & c - a \end{pmatrix} \]

The number of topples is:

\[h(x) = \left\lceil \frac{1}{2} x^t M(a, b, c) x \right\rceil \]

\[= (c + a)x^2 + 2bxy + (c - a)y^2 \]

Then number of grains is

\[\Delta h(u) = \sum_{v \sim u} h(v) - h(u). \]

- It's periodic for \(a, b, c \in \mathbb{Q} \)
- But it may be negative and/or unstable!

It may be stabilized without changing density of grains.
A definition of recurrence for periodic stable configurations

Pattern + two dimensional period \((\vec{p}_1, \vec{p}_2)\).

\[\forall x \in \mathbb{Z}^2 \quad u(x) = u(x + \vec{p}_1) = u(x + \vec{p}_2) \]
Lemme

If a periodic configuration is recurrent, then there exists a position \(y = t_1 \) for which all vertices of the first period are toppled.

We have \(\text{Period} 1 \subset E_{0,t_1} \Rightarrow E_{0,t_1} = E_{H,t_1-H} \) and \(v \in E_{0,t_1} \Rightarrow v + H \vec{y} \in E_{H,t_1} \). Then \(E_{H,t_1} \supset \text{Period} 2 \).